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IMPORTANCE Clinical practice guidelines recommend suicide risk screening and assessment
across behavioral health settings. The predictive accuracy of real-world clinician assessments
for stratifying patients by risk of future suicidal behavior, however, remains understudied.

OBJECTIVE To evaluate routine clinical suicide risk assessment for prospectively predicting
suicide attempt.

DESIGN, SETTING, AND PARTICIPANTS This electronic health record-based, prognostic study
included 89 957 patients (=5 years of age) with a structured suicide risk assessment (based
on the Suicide Assessment Five-step Evaluation and Triage framework) that was documented
by 2577 clinicians during outpatient, inpatient, and emergency department encounters at 12
hospitals in the Mass General Brigham health system between July 2019 and February 2023.

MAIN OUTCOMES AND MEASURES The primary outcome was an emergency department visit
with a suicide attempt code recorded in the electronic health record within 90 days or 180
days of the index suicide risk assessment. The predictive performance of suicide risk
assessments was evaluated on a temporal test set first using stratified prevalence (clinicians’
overall risk estimates from a single suicide risk assessment item indicating minimal, low,
moderate, or high risk) and then using machine learning models (incorporating all suicide risk
assessment items).

RESULTS Of the 812 114 analyzed suicide risk assessments from the electronic health record,
58.81% were with female patients and 3.27% were with patients who were Asian, 5.26%
were Black, 3.02% were Hispanic, 77.44% were White, and 11.00% were of Other or
Unknown race. After suicide risk assessments were conducted during outpatient encounters,
the suicide attempt rate was 0.12% within 90 days and 0.22% within 180 days; for inpatient
encounters, the rate was 0.79% within 90 days and 1.29% within 180 days; and for
emergency department encounters, the rate was 2.40% within 90 days and 3.70% within
180 days. Among patients evaluated during outpatient encounters, clinicians' overall
single-item risk estimates had an area under the curve (AUC) value of 0.77 (95% Cl,
0.72-0.81) for 90-day suicide attempt prediction; among patients evaluated during inpatient
encounters, the AUC was 0.64 (95% Cl, 0.59-0.69); and among patients evaluated during
emergency department encounters, the AUC was 0.60 (95% Cl, 0.55-0.64). Incorporating all
clinician-documented suicide risk assessment items (87 predictors) via machine learning
significantly increased the AUC for 90-day risk prediction to 0.87 (95% Cl, 0.83-0.90) among
patients evaluated during outpatient encounters, 0.79 (95% Cl, 0.74-0.84) among patients
evaluated during inpatient encounters, and 0.76 (95% Cl, 0.72-0.80) among patients
evaluated during emergency department encounters. Performance was similar for 180-day
suicide risk prediction. The positive predictive values for the best-performing machine
learning models (with 95% specificity) ranged from 3.6 to 10.1 times the prevalence

for suicide attempt.

CONCLUSIONS AND RELEVANCE Clinicians stratify patients for suicide risk at levels significantly
above chance. However, the predictive accuracy improves significantly by statistically
incorporating information about recent suicidal thoughts and behaviors and other factors
routinely assessed during clinical suicide risk assessment.
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uicideis the second leading cause of death among people

between the ages of 10 and 14 years and between the ages

of 20 and 34 years; it is the fifth leading cause of death
among people between the ages of 10 and 64 years.! More than
90% of people who die by suicide saw a health care profes-
sional in the year prior (>50% within the prior month).?3
Clinicians have a key role in identifying individuals at risk for
suicide.**

Estimating suicide risk has been described as the “quint-
essential clinical judgment”® of mental health clinicians. How-
ever, there is criticism that the ability of clinicians to predict
suicide risk may be too inaccurate for clinical utility.”° Nu-
merous studies have tested the predictive accuracy of well-
validated suicide risk screening tools'°# that are used to iden-
tify patients requiring comprehensive suicide risk assessment
(SRA) by clinicians.'>'® However, little research has evalu-
ated the accuracy of SRAs by clinicians for predicting suicidal
behavior in real-world settings.””-18

A study assessing the predictive accuracy of clinicians’
judgments for patient suicide risk alone reported'® an area un-
der the curve (AUC) of 0.76 for future suicide attempt within
1 month and another study reported?® an AUC of 0.73 for fu-
ture suicide attempt within 6 months. Other studies assess-
ing the accuracy of information routinely collected by clini-
cians during SRA (eg, suicidal thoughts and behaviors, risk
and protective factors?"-?2) with or without clinicians’ overall
judgments reported AUCs from 0.53%% to 0.608 for 6-month
suicide attempt prediction. The prior studies had limitations
such as small sample sizes, restriction to a single clinical set-
ting or population, and being conducted in research contexts
and not in real-world clinical practice.®!9:20-24 Robust evalu-
ations of the predictive accuracy of routine clinician SRA across
care settings are needed.'®2°

This retrospective, electronic health record (EHR)-based,
prognostic study assessed the predictive accuracy of SRAs by
clinicians in real-world practice. Using data from more than
800 000 SRAs routinely conducted across 3 clinical settings
(outpatient, inpatient, and emergency department [ED]) in a
large health care system, we aimed to: (1) describe clinician risk
stratification based on routine SRA, (2) determine the predic-
tive accuracy of clinicians’ overall risk estimates (including
differences by patient sociodemographic groups and clinician
credentials), and (3) evaluate whether statistical models incor-
porating other routinely collected information during SRAs by
clinicians (including suicidal thoughts and behaviors and risk
and protective factors) improve predictive accuracy.

Methods

Study Population

Data from clinical SRAs conducted between July 1, 2019, and
February 6, 2023, were extracted from the Mass General
Brigham health system EHR. The requirements for conducting
SRAs within this health system vary across hospitals, clinical
settings, and departments. Additional information about the
study methods appear in the eMethods in Supplement 1. A pro-
tocol was not prepared and this study was not preregistered.
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Key Points

Question How accurate are clinician assessments for risk
stratification of future suicide attempt?

Findings In this electronic health record-based, prognostic study,
clinicians’ overall single-item risk estimates predicted 90- and
180-day suicide attempt at significantly above chance levels.
Incorporating all suicide risk assessment items via machine
learning significantly increased predictive accuracy.

Meaning Clinicians stratify patients for suicide risk at significantly
above chance levels; however, predictive accuracy is significantly
enhanced by statistically incorporating information about recent
suicidal thoughts and behaviors and other risk and protective
factors routinely assessed during suicide risk assessment.

There was no patient or public involvement during the design,
conduct, reporting, interpretation, or dissemination of the study.

Extracted SRAs were included if they were (1) docu-
mented and (2) collected during a clinical encounter with a pa-
tient aged 5 years or older in (3) an outpatient setting (general
medical or psychiatric), an inpatient setting (general medical
or psychiatric), or an ED. In this health system, SRAs are
documented in a structured form (eTable 1in Supplement 1).
Suicide risk assessments were excluded if they were from un-
known or uncategorizable clinical settings (n = 72 313; 8.17%
of total).

The included SRAs were linked to the Mass General
Brigham research patient data registry to extract patient and
clinician characteristics and outcome variables.?® The study
procedures were approved by the Mass General Brigham in-
stitutional review board, which granted a waiver of informed
consent. The Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis (TRIPOD) + AL
reporting guideline*® was used for this investigation.

Study Measures
Primary Outcome
The primary outcome was a subsequent ED visit with an In-
ternational Statistical Classification of Diseases and Related
Health Problems, Tenth Revision (ICD-10) diagnostic code for
suicide attempt assigned in the EHR within 90 or 180 days af-
ter the index SRA.?7-28 Any ICD-10 codes not assigned in an ED
or preceded by an earlier suicide attempt code within 5 days
were excluded, reducing duplicate suicide attempt entries.?®
Given that EHR data only captured ED visits for suicide at-
tempt within the Mass General Brigham health system, we con-
ducted a set of prediction model sensitivity analyses on a
subset of the sample with insurance claim data available. For
these sensitivity analyses, we defined the outcome as an ICD-10
diagnostic code of suicide attempt assigned in an ED per either
EHR data or insurance claims data.

Predictors of Suicide Risk

The Mass General Brigham SRA is a structured EHR form based
on the validated Suicide Assessment Five-step Evaluation and
Triage (SAFE-T) framework,*® which was developed by the Sub-
stance Abuse and Mental Health Services Administration. The
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SRA form is used to assess recent suicidal thoughts and be-
haviors (eg, wish to be dead without thoughts of suicide; sui-
cidal ideation without a plan or intent; suicide plan, intent, or
prior suicide attempt) and nonsuicidal self-injurious or vio-
lent or destructive thoughts or behaviors. Additional SRA items
assess the presence of other suicide risk factors (eg, de-
pressed mood, recent loss, firearm access) or protective fac-
tors (eg, social support). A final item asks clinicians to docu-
ment their overall estimate of patients’ risk (“What is the
patient’s current, overall, acute risk of harm to self and/or oth-
ers?”) that was limited to the response options of “minimal,”
“low,” “moderate,” or “high” (all SRA items appear in eTable 1
in Supplement 1).

We evaluated 3 increasingly comprehensive structured pre-
dictor sets from each SRA in the EHR. The first predictor set
included the single-item, clinician overall risk estimate (item
10 in eTable 1 in Supplement 1) and the clinical setting (out-
patient, inpatient, or ED) in which the SRA was completed. The
second predictor set included clinicians’ overall risk esti-
mates plus a subset of predictors (structured SRA items 1
through 6; 38 predictors) capturing suicidal or nonsuicidal
self-injurious thoughts and behaviors and violent or destruc-
tive thoughts and behaviors. The third predictor set included
the predictors from the first predictor set (clinicians’ overall
risk estimates) and the second predictor set (clinicians’ over-
all risk estimates and the 38 predictors) plus structured SRA
items 7 through 8 (total of 87 predictors), capturing the pres-
ence of a wide range of other risk and protective factors.

The risk and protective factors were only included in the
third predictor set because we were interested in determin-
ing the potential incremental benefit of incorporating a broader
range of risk and protective factors beyond those exclusively
referring to self-harm and other-directed harm. In addition, the
items including checkboxes to indicate specific risk and pro-
tective factors were only added to the EHR form for the SRA
in May 2021. For the analyses using the third predictor set, a
dataset containing a subset of 414 150 SRAs was used (the in-
cluded SRAs were obtained after April 2021). Any missing
values were imputed via mode imputation and missingness
indicators were added.

Statistical Analysis

For the analyses on the full dataset, a temporal partition®' was
created that separated the training set (containing SRAs con-
ducted before May 6, 2022) and the test set (containing 170 356
[21% of the total sample] SRAs collected after May 6, 2022).

Stratified Prevalence Model Testing Clinicians’ Overall Risk Estimates
For the stratified prevalence models using the clinical setting
(outpatient, inpatient, and ED) and clinicians’ overall risk es-
timates, the SRA predictors were converted to absolute risk
estimates by calculating the stratified suicide attempt preva-
lence on the training set for each combination of values (3 set-
tings x 4 potential risk levels = 12 prevalence estimates).

Machine Learning Models
The larger 2 predictor sets were modeled using random forests
with 2000 trees.>? We also evaluated the predictor sets using
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LASSO (least absolute shrinkage and selection operator)
regression,>* naive Bayes, and a stacked ensemble (additional
information appears in the eMethods in Supplement 1).3>:36

Performance Evaluation
The primary performance metric was AUC. The SEs were cal-
culated analytically.?” The statistical significance of the dif-
ferences in the AUC values was calculated using the method
of DeLong et al.?® Predicted probabilities were converted to
binary suicide attempt predictions by selecting the threshold
closest to a target sensitivity of 70%, and then we assessed for
the positive predictive value (PPV), the negative predictive
value (NPV), and specificity. The best-performing machine
learning models were also evaluated at a target specificity of
95% for comparison with other studies that used EHR-based
machine learning models for suicide risk prediction.?”28:39

The differences in predictive performance across patient so-
ciodemographic groups and clinician credentials were evalu-
ated by examining the AUCs for stratified prevalence and using
machine learning models for patient sex, patient age, patient
race and ethnicity, insurance type (public vs private), and the
credentials of the clinicians who conducted the SRAs. The
Benjamini-Hochberg method was used to adjust for multiple
comparisons of model performance between patient and clini-
cian subgroups. Predictor importance for the best-performing
machine learning models was estimated using mean absolute
SHAP (Shapley Additive Explanation) values.*°4!

The analyses were conducted with R version 4.2.2 (R Foun-
dation for Statistical Computing).*? P < .05 indicated statisti-
cal significance.

. |
Results

There were 812 114 SRAs conducted by 2577 clinicians at 12 hos-
pitals among 89 957 patients. Of the 812114 SRAs, 699 483
(86.13%) were from outpatient encounters, 76 723 (9.45%) were
from inpatient encounters, and 35 908 (4.42%) were from ED
encounters. Of the 812114 SRAs, 477 628 (58.81%) were with
female patients, 26 588 (3.27%) were Asian patients, 42739
(5.26%) were Black patients, 24 564 (3.02%) were Hispanic pa-
tients, 628 897 (77.44%) were White patients, and 89326
(11.00%) were patients of Other or Unknown race.

Clinicians’ Overall Risk Estimates Alone
The distribution of clinicians’ overall risk estimates for SRAs
in each setting appears in eTable 2 in Supplement 1. Follow-
ing SRAs conducted during outpatient encounters, the sui-
cide attempt rate was 0.12% within 90 days and 0.22% within
180 days; for inpatient encounters, the rate was 0.79% within
90 days and 1.29% within 180 days; and for ED encounters, the
rate was 2.40% within 90 days and 3.70% within 180 days
(eTable 3 in Supplement 1). Outcome prevalence by patient
sociodemographic characteristics across settings is detailed in
eTables 4A-4C in Supplement 1.

For the final item of the SRA, clinicians were asked to docu-
ment their overall estimate of the patient’s suicide risk using
the response options of “minimal,” “low,” “moderate,” or
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Figure 1. Suicide Attempt Prevalence Stratified by Clinicians’ Overall Risk Estimates
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2For the final item of the suicide risk assessment, clinicians were asked to
document their overall estimate of the patient’s suicide risk using the response
options of “minimal,” “low,” “moderate,” or “high."

ED indicates emergency department. The area under the curve (AUC) values
were added for reference and were not derived from the data in these graphs.

“high.” In outpatient settings, 3.38% of the SRAs with a high-
risk estimate by clinicians were followed by a suicide attempt
within 90 days compared with 1.09% of SRAs with a moderate-
risk estimate, 0.15% with a low-risk estimate, and 0.02% with
a minimal-risk estimate (Figure 1 and eTable 3 in Supple-
ment 1). In inpatient settings, 1.83% of SRAs with a high-risk
estimate by clinicians were followed by a suicide attempt within
90 days compared with 1.32% of SRAs with a moderate-risk
estimate, 0.50% with a low-risk estimate, and 0.09% with a
minimal-risk estimate. In ED settings, 3.81% of SRAs with a
high-risk estimate by clinicians were followed by a suicide at-
tempt within 90 days compared with 2.85% of SRAs with a
moderate-risk estimate, 2.05% with a low-risk estimate, and
0.89% with a minimal-risk estimate. The same pattern was
present for suicide attempt within 180 days after the clini-
cian risk estimate. The distribution of SRAs by the profes-
sional credentials of clinicians across settings (outpatient,
inpatient, and ED) appears in eTable 5 in Supplement 1.

The stratified prevalence models using only clinicians’
overall single-item risk estimates across all SRAs conducted in
each clinical setting significantly outperformed chance-level
prediction (Table 1 and Figure 1). Among patients evaluated
during outpatient encounters, clinicians’ overall risk esti-
mates for 90-day suicide attempt prediction had an AUC of 0.77
(95% CI, 0.72-0.81); among patients evaluated during inpa-
tient encounters, the AUC was 0.64 (95% CI, 0.59-0.69); and
among patients evaluated during ED encounters, the AUC was
0.60 (95% CI, 0.55-0.64). Suicide attempt prediction accu-
racy was similar for 180 days after an SRA. Based on a target
sensitivity of 70%, the PPVs ranged from 0.22% (for 90-day
suicide attempt prediction based on SRAs conducted during
outpatient encounters) to 3.92% (for 180-day suicide attempt
prediction based on SRAs conducted during ED encounters).

The performance statistics for the stratified prevalence
models by patient sociodemographic groups (age, sex, race and
ethnicity, insurance type) appear in eTables 6-9 in Supple-
ment 1. The AUC point estimates were not statistically signifi-
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cantly better than chance for children (across all clinical set-
tings) or for adolescents, older adults, and Asian patients, Black
patients, and patients of Other or Unknown race in certain
clinical settings. The performance statistics for the stratified
prevalence models by clinician credentials appear in eTable 10
in Supplement 1. Suicide attempt predictive accuracy was vari-
able by clinician credentials with AUC point estimates that
were not statistically significantly better than chance for cer-
tain subgroups of clinicians in certain clinical settings.

Clinicians' Overall Risk Estimates

Combined With Other SRA Items Using Machine Learning
Suicide attempt predictive accuracy was significantly higher
for both machine learning models incorporating other SRA
items than for the stratified prevalence models using only cli-
nician risk estimates (Table 1). For the first set of machine learn-
ing models incorporating only the self-injurious and violent
or destructive SRA items, the AUC improved by 0.11 (95% CI,
0.08-0.14) for SRAs conducted during outpatient encoun-
ters; by 0.12 (95% CI, 0.08-0.15) during inpatient encounters,
and by 0.14 (95% CI, 0.10-0.19) during ED encounters.

The random forest models had the best performance for
both 90-day and 180-day suicide attempt prediction (more than
LASSO regression, naive Bayes, and a stacked ensemble; ad-
ditional details appear in the eMethods in Supplement 1), reach-
ing statistical significance in most model comparisons (Table 1
and eTables 11A-11B in Supplement 1). For 90-day suicide at-
tempt prediction, the random forest models including 38 pre-
dictors yielded an AUC of 0.88 (95% CI, 0.84-0.91) based on
SRAs conducted during outpatient encounters, 0.76 (95% CI,
0.71-0.81) during inpatient encounters, and 0.74 (95% CI, 0.70-
0.79) during ED encounters. Suicide attempt prediction accu-
racy was similar for 180 days after an SRA. Based on a target
sensitivity of 70%, the PPVs ranged from 0.56% (for 90-day
suicide attempt prediction based on SRAs conducted during
outpatient encounters) to 5.78% (for 180-day suicide attempt
prediction based on SRAs conducted during ED encounters).
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Figure 2. Area Under the Curve (AUC) for Suicide Risk Assessments Predicting Suicide Attempt Within 90 and 180 Days by Setting of Index Encounter
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The AUC values are based on models assessing (1) clinicians’ overall risk estimates, (2) clinicians’ overall risk estimates plus 38 suicide risk assessment (SRA) items,
and (3) clinicians' overall risk estimates plus all 87 SRA items. ED indicates emergency department.

The performance statistics for the second set of machine
learning models that incorporated all SRA items (87 predic-
tors), including clinician-documented risk and protective
factors, appear in Table 1. The best-performing machine
learning models (random forests) for 90-day suicide attempt
prediction had an AUC of 0.87 (95% CI, 0.83-0.90) for SRAs con-
ducted during outpatient encounters, an AUC of 0.79 (95% CI,
0.74-0.84) during inpatient encounters, and an AUC of 0.76
(95% CI, 0.72-0.80) during ED encounters. Suicide attempt pre-
diction accuracy was similar for 180 days after an SRA. Based
on a target sensitivity of 70%, the PPVs ranged from 0.72% (for
90-day suicide attempt prediction based on SRAs conducted
during outpatient encounters) to 6.64% (for 180-day suicide
attempt prediction based on SRAs conducted during ED en-
counters).

The performance statistics for the best-performing ma-
chine learning models by patient sociodemographic groups and
clinician credentials appear in eTables 12-16 in Supplement 1.
Similar to the stratified prevalence models, predictive accu-
racy varied across subgroups. Due to risk of the temporal test
set performance being inflated when the same patients and
clinicians were also observed during the training set, the per-
formance statistics for the best-performing machine learning
models were stratified by whether individual patients and
clinicians appeared in both the training and test sets or the test
set only appear in eTables 17-18 in Supplement 1. The perfor-
mance statistics were similar for the models in which indi-
vidual patients and clinicians appeared in both the training
and test sets vs only in the test set.

The machine learning models that included risk or protec-
tive factor items were built on the subset of SRAs conducted dur-
ing or after May 2021. To compare performance of the models
thatincluded vs did not include risk and protective factors, we
also built the first set of machine learning models (using the
subset of SRA items, 38 predictors) in the subset of SRAs con-
ducted during or after May 2021. Compared with the full data-
set, model performance in the subset of SRAs was similar. The
random forest models for 90-day suicide attempt prediction
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yielded an AUC of 0.89 (95% CI, 0.85-0.92) based on SRAs
conducted during outpatient encounters, 0.75 (95% CI, 0.70-
0.80) during inpatient encounters, and 0.74 (95% CI, 0.70-
0.79) during ED encounters. The random forest models for 180-
day suicide attempt prediction yielded an AUC of 0.85 (95% CI,
0.82-0.88) based on SRAs conducted during outpatient encoun-
ters, 0.75 (95% CI, 0.71-0.79) during inpatient encounters,
and 0.74 (95% CI, 0.70-0.77) during ED encounters.

The stratified prevalence model (clinicians’ overall risk es-
timates) and both machine learning models (the first model
using clinicians’ overall risk estimates plus the subset of SRA
items [38 predictors] and the second model using clinicians’
overall risk estimates plus all SRA items [87 predictors]) ap-
pear in Figure 2. The predictive accuracy of both machine learn-
ing models using random forests was significantly higher
than the stratified prevalence model (clinicians’ overall risk es-
timates alone). The second machine learning model (clini-
cians’ overall risk estimates plus all SRA items [87 predic-
tors]) outperformed the stratified prevalence model and the
first machine learning model (clinicians’ overall risk esti-
mates plus a subset of SRA items [38 predictors]) for 90-day
suicide attempt prediction based on SRAs conducted during
inpatient encounters, but not based on SRAs conducted dur-
ing ED or outpatient encounters (Table 1). The random forest
models for 180-day suicide attempt prediction including
risk and protective factors outperformed those without risk
and protective factors across all 3 settings.

When using a target specificity threshold of 95%, the PPVs
for the best-performing machine learning models ranged from
1.13% for 90-day suicide attempt prediction (based on SRAs
conducted during outpatient encounters) to 6.89% (based on
SRAs conducted during ED encounters) (Table 2). When using
a target specificity threshold of 95%, the PPVs for the best-
performing machine learning models ranged from 2.12% for
180-day suicide attempt prediction (based on SRAs con-
ducted during outpatient encounters) to 11.57% (based on SRAs
conducted during ED encounters). Selected performance sta-
tistics for the best-performing machine learning models across

jamapsychiatry.com
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Table 2. Performance Metrics for Best-Performing Machine Learning Models

Best-performing machine learning models: risk stratification by overall clinician assessment plus all SRA items (87 predictors)

Outcome prevalence Lift (PPV/

AUC (95% CI) in test set, % Sensitivity, % Specificity, %° PPV, % NPV, % prevalence)
90-d Suicide attempt prediction
Outpatient 0.87 (0.83-0.90) 0.12 45.86 95.00 1.13 99.93 9.42
Inpatient 0.79 (0.74-0.84) 0.75 18.33 95.00 2.71 99.35 3.61
Emergency department 0.76 (0.72-0.80) 1.80 20.13 95.00 6.89 98.48 3.83
180-d Suicide attempt prediction
Outpatient 0.88(0.86-0.91) 0.21 51.99 95.00 2.12 99.90 10.10
Inpatient 0.79(0.75-0.83) 1.15 19.13 95.00 4.26 99.02 3.70
Emergency department 0.77 (0.74-0.80) 2.98 21.29 95.00 11.57 97.52 3.88

Abbreviations: AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; SRA, suicide risk assessment.

2 A target specificity threshold of 95% was used.

4 different target sensitivity thresholds (10%, 30%, 50%, 70%)
appear in eTable 19 in Supplement 1.

Predictor Importance

The best (top 25) 90-day suicide attempt predictors based on
the best-performing machine learning models (stratified by out-
patient, inpatient, and ED setting) appear in Figure 3 (the best
180-day predictors appear in eFigure 1in Supplement 1). In the
outpatient setting, help-seeking behavior, clinicians’ overall
risk estimates, and prior suicidal behaviors or attempts (pres-
ence or absence) were the most important predictors. For in-
patient and ED settings, the most important predictors were
clinical setting of the index SRA, clinicians’ overall risk esti-
mates, recent discharge (within past 3 months) from a psychi-
atric facility, a history of prior suicide attempts, and presence
or absence of prior suicidal behaviors or attempts.

Sensitivity Analyses

To assess the generalizability of these findings, we con-
ducted sensitivity analyses in a subset of patients with avail-
able insurance claims data (8707 patients and 48 959 SRAs;
6.03% of the full SRA sample), which were combined with the
data from the Mass General Brigham health system EHR, to as-
sess suicide attempt outcomes. We observed a similar pattern
of overall results (for the stratified prevalence and best-
performing machine learning [random forest] models)
when predicting suicide attempt based on diagnostic codes ob-
tained from either insurance claims data or the EHR (eTable 20
and eFigure 2 in Supplement 1).

|
Discussion

Clinicians estimated patients’ suicide risk at levels signifi-
cantly better than chance during routine SRA. This determi-
nation was made with high precision by extracting all SRAs
from the EHR for a health system, resulting in a larger, more
diverse clinical sample than prior work, and with a temporal
validation strategy that parallels prospective clinical use.*
Compared with using only clinicians’ overall single-item risk
estimates; however, we achieved significantly enhanced sta-
tistical predictions using machine learning and incorporating

jamapsychiatry.com
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additional routinely documented information during SRA.
The single-item, clinician overall risk estimate was among
the top 2 most important predictors in all best-performing
machine learning models. Although our findings suggest that
clinician judgment alone should not be dismissed as having
no predictive value, statistical models that use all clinician-
documented information during SRAs are consistently supe-
rior to clinical judgment alone.

For certain patient and clinician subgroups in certain clini-
cal settings, clinicians’ risk estimates alone (and in some cases,
the machine learning models incorporating other SRA items)
did not exceed chance-level prediction. This may be due in
part to much smaller sample sizes in these sets of stratified
models, implicit biases, and variability in clinician training
and experience.

The best-performing outpatient machine learning models
incorporating all SRA data (88% specificity at 70% sensitivity)
satisfy accuracy thresholds for determining whether a suicide
risk prediction method is accurate enough to be cost-effective
if used to target evidence-based interventions for suicide risk
reduction to high-risk patients.** Our models, which relied solely
on EHR-sourced clinician SRA data, leveraged a novel set of pre-
dictors which, to our knowledge, have not yet been incorpo-
rated in other EHR-based suicide risk prediction work. They
demonstrate strong promise compared with other models using
vast amounts of standard structured EHR data (eg, diagnostic
or procedure codes, medications). For example, in the same
health care system, Sheu et al*° reported an AUC of 0.74 for psy-
chiatric ED prediction of suicide attempt at 6 months and Nock
et al® reported an AUC of 0.78 compared with an AUC of 0.77
for the best-performing model in the current study. Sheu et al*®
reported an AUC of 0.79 for psychiatric inpatient prediction of
suicide attempt at 6 months compared with an AUC of 0.79
for the best-performing model in the current study for SRAs
conducted in the inpatient setting.

Despite the overall low PPVs typical for low-prevalence
events,?7-28:39:45:46 the PPVs for our best-performing models
(when using a 95% specificity threshold) were up to 10.1 times
the baseline suicide attempt prevalence for outpatient settings
(up to 3.9-fold for SRAs conducted during ED encounters and up
to 3.7-fold for SRAs conducted during inpatient encounters), and
comparable with other EHR-based machine learning models in
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Figure 3. Top 25 Predictors in the Best-Performing Machine Learning Models for Suicide Attempt Within 90 Days

E 90-d Suicide attempt predictors for outpatient setting . 90-d Suicide attempt predictors for inpatient setting

Help-seeking behavior (+) Inpatient setting (+)

Clinicians’ overall risk estimates (+) Clinicians’ overall risk estimates (+)

No prior suicidal behaviors or attempts (=) Discharged from psychiatric facility within past 3 mo (+)

Prior suicidal behaviors or attempts (+) History of prior suicide attempts (+)

Missing information about protective factors in version 2 (+) No prior suicidal behaviors or attempts (=)
Clinician entered any text for static risk factors (+) Prior suicidal behaviors or attempts (+)

History of prior suicide attempts (+) Limited coping skills (+)

Outpatient setting (-) Recent thoughts of harm to self or others (+)

Social supports (+) No suicidal thoughts (+)

Missing information about modifiable risk factors in version 2 (+) Clinician entered any text for static risk factors (+)
Details added for suicidal behavior (=) Details added for suicidal behavior (+)

No details added for suicidal behavior (+) No details added for suicidal behavior (-)

Engagement in treatment (-) Help-seeking behavior (+)

Sense of responsibility to family (+) Depressed mood (=)

Limited coping skills (+) Missing information about protective factors in version 2 (+)

Missing information about protective factors in version 1 (=) Chronic or severe mental illness (+)
Recent thoughts of harm to self or others (+) Any suicidal thoughts (+)

Anxiety, panic, or both (=) Missing information about protective factors in version 1 (=)

Missing information about static risk factors in version 1 (+) Missing information about modifiable risk factors in version 1 (=)
Clinician entered any text for protective factors (+) Impulsivity (+)
Depressed mood (=) Missing information about static risk factors in version 1 (+)

No suicidal thoughts (-) Clinician entered any text for protective factors (+)

Missing information about modifiable risk factors in version 1 (=) Clinician entered any text for modifiable risk factors (+)

Discharged from psychiatric facility within past 3 mo (+) Substance use or intoxication (+)
Clinician entered any text for modifiable risk factors (+) Anxiety, panic, or both (=)

0.00061 0.00123 0 0.00152 0.00304
Mean absolute SHAP (Shapley Mean absolute SHAP (Shapley
Additive Explanation) value Additive Explanation) value

@ 90-d Suicide attempt predictors for ED setting

ED setting (+)

Clinicians’ overall risk estimates (-)

No prior suicidal behaviors or attempts (=)

Prior suicidal behaviors or attempts (+)

History of prior suicide attempts (+)

Discharged from psychiatric facility within past 3 mo (+)
Recent thoughts of harm to self or others (+)

Limited coping skills (+)

Chronic or severe mental illness (+)

Details added for suicidal behavior (+)

No details added for suicidal behavior (=)

Missing information about protective factors in version 1 (=)
Clinician entered any text for protective factors (+)

No suicidal thoughts (-)

Clinician entered any text for static risk factors (+)
Help-seeking behavior (+)

Any suicidal thoughts (+)

Depressed mood (=)

Missing information about protective factors in version 2 (+)
Missing information about modifiable risk factors in version 1 (-)
Clinician entered any text for modifiable risk factors (+)
Pending incarceration or homelessness (+)

Missing information about modifiable risk factors in version 2 (+)
Limited social supports (+)

Substance use or intoxication (+)

0.00738 0.01477

Mean absolute SHAP (Shapley
Additive Explanation) value

A positive sign indicates the variable is positively associated with suicide risk and a negative sign indicates the variable is negatively associated with suicide risk
(ie, is protective). SRA indicates suicide risk assessment.

the same health system.?”*° However, cautionis warranted when  thresholds, patient populations and cohorts, validation meth-
comparing studies due to variation in outcome definitions, ods, and intended clinical use (eg, screening vs assessment'>).
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Our findings may hold substantial translational promise.
Models using SRA data could be integrated into EHRs by health
system analytics teams, enabling real-time risk estimation im-
mediately after SRAs. Clinicians could receive alerts embed-
ded within EHRs that contain risk thresholds tailored to health
system priorities and resources, alongside suggested
interventions.*”-4° Future research should compare machine
learning models using clinician SRA alone vs combined with
structured EHR data to rigorously evaluate incremental util-
ity of standard EHR data,>°->! and improve the understanding
of how to optimally combine (and potentially sequence)
clinical judgment or risk assessment with newer statistical
modeling approaches.!®->°->3 Combining clinician SRA with
powerful emerging EHR suicide risk algorithms has potential
to augment suicide risk prediction, paving the way for more
targeted and timely intervention.

Limitations

This study has limitations. First, the SRA item used for clini-
cians’ overall risk estimates referred to patient “risk of harm
to selfand/or others.” Although self- and other-directed harm
can co-occur,’*°° these are distinct behaviors with distinct

Original Investigation Research

Second, this study examined SRAs conducted in routine care
in alarge health system spanning multiple hospitals in which cli-
nician SRA workflows may vary across settings and patient en-
counters. The results apply only to patients who received SRAs
administered by clinicians, and may reflect setting-specific
subsets of patients rather than broader patient populations.

Third, for the vast majority of the study sample, we were
only able to ascertain suicide attempt outcomes via the EHR
from a single health system. Comprehensive access to insur-
ance claims data capturing diagnoses occurring outside this
health system, as well as adding patient-reported outcomes
assessment,® would permit more robust and precise out-
come measurement, potentially increasing the robustness
and generalizability of the models.

. |
Conclusions

Clinicians stratify patients for suicide risk at levels signifi-
cantly above chance. However, the predictive accuracy im-
proves significantly by statistically incorporating informa-
tion about recent suicidal thoughts and behaviors and other

risk profiles.
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